

C $\epsilon_{\mathrm{B}} \mathrm{rS}_{\mathrm{is}} \mathrm{C}$

FB100 FB400 FB900

General Description

The FB Series is a high performance process controller with a more advanced Brilliant II PID，autotuning，selectable sampling cycle time of $0.05 / 0.1 / 0.25$ second and 0.1% of accuracy in short depth housing．
Applications include various plastic machines（extrudes，injection machine，etc），electric furnaces，semiconductor，food processing， environmental chambers and many others．

Features

is High Accuracy with selectable sampling cycle time
动 The depth of 60 mm （FB100：74mm）
公 Inter－cntroller Communication
is Brilliant II PID control
动 Start－up tuning and Autotuniung
Panel space saving
The FB Series has very short depth as a $1 / 16,1 / 8$ or $1 / 4$ DIN size controller．The series was designed with a mounting bracket that allows close horizontal mounting of as many as six

Numerous inputs and outputs

Easy maintenance

The internal assembly of the FB Series can be removed from the front．

Direct Function Keys

Three direct function keys enable one－touch operation on frequently used functions such as Auto／Manual，Monitoring display scroll，and Memory area selection．
The keys can also be configured as RUN／STOP，Remote／Local， and Auto／Manual keys．
－FB400／900
1．Auto／Manual，Monitoring display scroll，Memory area selection

2．Auto／Manual，Remote／Local，RUN／STOP

＊Also possible to invalidate the direct mode selection key function．
－FB100
One function can be selected from the following list and assignable to the key：
Auto／Manual，Monitoring display scroll，Memory area selection， Remote／Local，RUN／STOP
（Default setting ：Auto／Manual）

Features

Ramp / Soak Program Control

The FB900/400 Series temperature controller has Recipe (Multi-memory Area) function which stores up to 8 sets of control parameters.

Up to 16 -segment ramp/soak control is available by using the memory area function (ramp-to-set point UP and DOWN, soak time, link area number).

Numerous Inputs and Outputs

A maximum of seven event inputs can be specified. A maximum of five outputs can be specified, and various output functions (control output, analog retransmission, event up to 4) can be allocated in output logic operation.

- Available inputs and outputs depend on the specifications.

Inter-controller Communication

The FB Series has a second communication port (COM2) for intercontroller communication. It achieves more precise cascade control and ratio control by sending data via digital communication while conventional cascade controllers send data to slave controllers by analog signal with less resolution.

Auto-temperature-rise with Learning Function

Auto-temperature-rise with learning function achieves temperature uniformity at ramp-up without partial thermal expansion even when using multiple FB Series controllers.

- Up to 32 controllers with 16 groups can be configured.

Temperature Ratio Setting
If the master controller changes the control set value, the slave controllers will also change the set values by following preset ratios to the master.

- Up to 32 controllers with 16 groups can be configured.

Cascade Control

It is effective when a thermal time-delay exists between the heat source and a control point. A maximum of 30 slave controllers can be connected to one master controller.

Group RUN/STOP Function

When RUN/STOP mode is changed on one controller in a group, the mode of all the other controllers in the same group will be also automatically changed.

- Up to 32 controllers with 16 groups can be configured.

(Note) Time lag among controllers caused by inter-controller communication is (Max. 70 ms) x (number of controllers connected).
Please consider the time lag of inter-controller communication for high-speed process control in which process changes rapidly.

Features

Brilliant II PID Control

- Selectable PID control algorithm

PID control algorithm is selectable in the FB Series to achieve the most precise control for various applications.
PV Derivative PID : suitable for fixed setpoint control (Factory setting)
Deviation Derivative PID : suitable for ramp control using ramp-to-setpoint function and cascade control.

Deviation derivative type PID control

- Selectable sampling time among $50 \mathrm{~ms}, 100 \mathrm{~ms}$, and 250 ms .

Selectable sampling time makes the FB Series suitable for any application ranging from pressure control requiring fast response to precise control requiring highest resolution. The selections are 100 ms (factory setting) usually suitable for most of standard applications, 50 ms for fast response applications, and 250 ms for precise control requiring high-resolution. The PID parameters can be set in 1/10 unit which supports fast and accurate control. Ramp-to-setpoint and output-change-limiter functions are each settable for UP and DOWN so that a special heater can be controlled precisely.

- Advanced Heat/Cool PID algorithm with Undershoot Suppression
Advanced Heat/Cool PID algorithm achieves stable control by the Undershoot Suppression (USS) function, and independent P-I-D settings for both Heat and Cool which are effective for applications with strong cooling gain. Control Response type selection is settable to avoid overshoot at start-up and against external disturbance. The FB Series also offers selection of water cool and air cool PID control algorithm.

USS (Under Shoot Suppression) gain

Configurable control type
The control type is configurable among Heat, Cool, Heat/Cool, and position proportioning.

Autotuning

Autotuning to calculate optimum PID parameters
The improved Autotuning alrogithm calculates optimum PID parameters. For Heat/Cool control, PID parameters for both sides (Heat and Cool) are calculated.

Start-up tuning to eliminate time for autotuning
Start-up tuning eliminates time required for conventional autotuning as it calculates optimum PID values by temperature characteristics at start up. It is useful in applications which require a long time for conventional autotuning. The timing of activation of start-up tuning can be selected from at power-up, at setpoint change, and at power-up/setpoint change. It is also settable to Only-once or always-ON.

- Validity/invalidity of the startup tuning function can be set.
- Heater power needs to be turned on simultaneously with or before turning on power to the temperature controller
- If start-up tuning does not calculate suitable PID values due to characteristics of application, use Autotuning function.

- Output limiters high and low for autotuning

Output limiters high and low for autotuning enables autotuning to be used with any application in which the output has to be within limited range, even during autotuning. High and low are independently settable.

Temperature/Process Controller $\mathrm{FB} 100 / 400 / 900$

Features

Setup and Data Monitoring

The FB Series has the loader port (provided as standard) to connect to a PC USB port with Windows2000/XP. The standard port allows setup and data logging to be managed by the PC. The FB Series is recognized as an external device on the PC.

Easy data monitoring/logging withWin-UCI
The Win-UCI can store maximum 8,000 points of data. Data can be exported as an electronic file in CSV format. It has a trend graph function and data monitoring function.

- Easy setup with Win-UCI

Using the Win-UCI, the controller setup and parameter settings can be done from a PC. The parameter settings can be stored on the PC making it easy to copy the same parameters to other FB Series controllers.

- The instrument must have a hardware required for selected functions.
- No power supply cable necessary at setup

When setting up the FB Series via the loader port, the power can be supplied from the PC via the USB port so no power supply cable is necessary. Just connect the cable to the FB Series and setup is ready to go.

Data logging and trend graph screen

Data setting screen

Loader port (Provided as standard)

Reinforced Insulation, Lead-free PCBs, Low Power Consumption

- Reinforcement Insulated Power Supply Circuit

Power supply circuit of the FB Series has been designed to be reinforcement insulated. It saves cost to perform basic insulation on the equipment side.
<Requirements for electrical equipment according to safety standards>
The safety standards on electrical equipment (IEC 61010-1 and JISC 1010-1) request that the secondary side of the equipment which may be touched by the operator should be double insulated or reinforcement insulated* from high voltage causing electric shock.

- Insulation safeguarding personnel from electric shock which is equal to double insulation or higher is called "reinforced insulation".
- Lead-free Design complying with EU Directive

The FB Series uses lead-free PCBs complying with EU Directive *. *WEEE Directive (Waste Electrons/Electrical Equipment Directive) and RoHS Directive (Directive of Restricting the use of Harmful Materials for Electrical Products)

- Low Power Consumption, Low Heat Generation

The power consumption is 30% less than the equivalent model of RKC REX-F900. The saving is 5VA per controller at 240VAC. It also generates less heat and it helps keep temperature low inside the control cabinet.

Temperature/Process controller FB 100/400/900

Specifications

Input

Input

Universal input
a) Temperature, Current, Low voltage input group

Thermocouple : K, J, R, S, B, E, T, N (JIS/IEC), PLII (NBS), W5Re/W26Re (ASTM), U, L (DIN)

- Influence of external resistance : Approx. $0.2 \mu \mathrm{~V} / \Omega$
- Input break action : Up-scale / Down-scale (Selectable)

RTD : Pt100 (JIS/IEC), JPt100 (JIS)

- Influence of input lead resistance : Approx. $0.01[\% / \Omega$] of reading
-Maximum 10Ω per wire
- Input break action : Up-scale

Low voltage : 0 to 1 V DC, 0 to 100 mV DC, 0 to 10 mV DC,
-100 to +100 mV DC, -10 to +10 mV DC

- Input break action : Up-scale / Down-scale (Selectable)

Current : 4 to 20 mA DC, 0 to 20 mA DC

- Input break action : Uncertain (indicates a value around 0 mA)
b) High voltage input group

High voltage : 0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC, -1 to +1 V DC

- Input break action : Uncertain (indicates a value around OV)

Sampling Time

0.1 sec

- 0.05 sec or 0.25 sec is available.

Input Digital Filter

0.1 to 100.0 sec (OFF when 0 is set.)

PV Bias
-span to +span
PV Ratio
0.500 to 1.500

Square Root Extraction

Equation: PV $=\sqrt{ }$ (Input value \times PV ratio + PV bias)
Low level cut OFF : 0.00 to 25.00% of span

Performance

```
Measuring Accuracy
    a) Thermocouple
        Type : K, J, T, E, N, PLII, U, L
            Less than -100 C (-148 F) : }11.\mp@subsup{0}{}{\circ}\textrm{C}(\pm1.\mp@subsup{8}{}{\circ}\textrm{F}
            -100 to 500 % (-148 to 932 }\mp@subsup{}{}{\circ}\textrm{F}):\pm0.\mp@subsup{5}{}{\circ}\textrm{C}(\pm0.\mp@subsup{9}{}{\circ}\textrm{F}
            More than 500 C C (932'F) : }\pm(0.1%\mathrm{ of Reading + 1 digit)
        Type : N, S, R, W5Re/W26Re
            Less than 0}\mp@subsup{0}{}{\circ}\textrm{C}(3\mp@subsup{2}{}{\circ}\textrm{F}):\pm2.\mp@subsup{0}{}{\circ}\textrm{C}(\pm3.\mp@subsup{6}{}{\circ}\textrm{F}
            0 to 1000 }\mp@subsup{}{}{\circ}\textrm{C}(-148 to 1832\mp@subsup{}{}{\circ}\textrm{F}): \pm1.\mp@subsup{0}{}{\circ}\textrm{C}(\pm1.\mp@subsup{8}{}{\circ}\textrm{F}
            More than 1000 }\mp@subsup{}{}{\circ}\textrm{C}(183\mp@subsup{2}{}{\circ}\textrm{F}):\pm(0.1% of Reading + 1 digit
            Type : B
            Less than 400 C (752'F) : }\pm70.\mp@subsup{0}{}{\circ}\textrm{C}(\pm12\mp@subsup{6}{}{\circ}\textrm{F}
            400 to }100\mp@subsup{0}{}{\circ}\textrm{C}(752\mathrm{ to }183\mp@subsup{2}{}{\circ}\textrm{F}):\pm1.\mp@subsup{4}{}{\circ}\textrm{C}(\pm2.\mp@subsup{5}{}{\circ}\textrm{F}
            More than 1000 C ( }183\mp@subsup{2}{}{\circ}\textrm{F}):\pm(0.1%\mathrm{ of Reading + 1 digit)
    Cold junction temperature compensation error
        \pm1.0 % C (1.8 % F) [at 5 to 40 % (41 to 104 % F)]
        Within }\pm1.\mp@subsup{5}{}{\circ}\textrm{C}(\pm2.\mp@subsup{7}{}{\circ}\textrm{F}
        [Between-10 and 5 ' C (14 to 41 F), 40 and 50 % (104 to 122 F)]
    b) RTD
```



```
        More than 200'C (392'F) : }\pm(0.1%\mathrm{ of Reading + 1 digit)
    c) DC voltage and DC current
        \pm(0.1% of span)
    -Close horizontal mounting error : }\pm1.\mp@subsup{5}{}{\circ}\textrm{C}(\pm2.\mp@subsup{7}{}{\circ}\textrm{F}
Insulation Resistance
More than \(20 \mathrm{M} \Omega\) ( 500 V DC) between measured terminals and ground More than \(20 \mathrm{M} \Omega\) ( 500 V DC) between power terminals and ground
```


Dielectric Strength

1000V AC for one minute between measured terminals and ground

Control

Control Method

a) Brilliant II PID control

- Available for reverse and direct action.
b) Brilliant PID control (Heat/Cool type)
c) Position proportioning control without feedback resistance.
$\cdot \mathrm{a}), \mathrm{b}), \mathrm{c}$) is selectable.

Autotuning Method

a) For PID control (Direct action/Reverse action)
b) For Heat/Cool PID control (For extruder, air cooling type)
c) For Heat/Cool PID control (For extruder, water cooling type)
d) For Heat/Cool PID control

Startup tuning
The condition to activate Startup Tuning is selectable among a) to g)
a) At power-on, one-time tuning
b) At SV change, one-time tuning
c) At power-on and SV change, one-time tuning
d) At power-on, always on
e) At SV change, always on
f) At power-on and SV change, always on
g) Function off
(Not available for Heat/Cool PID control type)

Major Setting Range

Set value :
Proportional band :

Integral time :
ase as input range.
to input span (Temperature input)
0.0 to 1000.0% of span (Voltage, Current input)

Derivative time :
trol when $\mathrm{P}=0$
0 to 3600 sec . or 0.0 to 1999.9 sec . (selectable)
0 to 3600 sec . or 0.0 to 1999.9 sec
(selectable)
Cool-side proportional band : 1 to input span (Temperature input) 0.1 to 1000.0% of span (Voltage, Current input)

Cool-side integral time : 0 to 3600 sec . or 0.0 to 1999.9 sec . (selectable)
Cool-side derivative time: 0 to 3600 sec . or 0.0 to 1999.9 sec . (selectable)
Deadband/Overlap : \quad-span to + span (Temperature input) -100.0 to $+100.0 \%$ of span (Voltage, Current input)
Control response :
Ramp-to-setpoint :
Slow, Medium, Fast
0 to span per Time
(Time is selectable between 1 and 3600 sec) (Up/Down individual setting)
Output limiter :
-5.0 to $+105.0 \%$ (High/Low individual setting)
Cool-side output limiter: $\quad-5.0$ to $+105.0 \%$ (High/Low individual setting)
Output change rate limiter : 0.0 to $100.0 \% / \mathrm{sec}$. (Up/Down individual setting)
Cool-side output change rate limiter:
0.0 to $100.0 \% /$ sec. (Up/Down individual setting)

Proportional cycle time : 0.1 to 100.0 sec
Cool-side proportional cycle time :
0.1 to 100.0 sec.

Manual reset : $\quad-100.0$ to $+100.0 \%$
Output at control stop mode : -5.0 to 100.5\% (Heat/Cool individual setting)
Motor Valve Control (position proportioning control type only) Motor time : $\quad 5$ to 1000 sec . (full open to full close) Integral output limiter : OFF, 100.0 to 200.0% of motor time
Neutral zone:
0.1 to 10.0\%

Differential gap : $\quad 0.1$ to 5.0%
Valve action at a stop mode : a) CLOSE : OFF, OPEN : OFF
b) CLOSE: ON, OPEN : OFF
c) CLOSE : OFF, OPEN : ON

- a), b), c) is selectable.

Memory area

Number of memory area : 8 memory areas
Setting item :
Set value (SV), Proportional band, Integral time, Derivative time, Cool-side proportional band,
Cool-side integral time, Cool-side derivative time,
Deadband/Overlap, Control response,
Manual reset,Ramp-to-setpoint (Up/Down),
Event set vale, LBA time, LBA deadband,
Soak time : 0 min 0.00 sec to 199 min 59 sec or
0 hr 00 min to 9 hr 59 min
(selectable)
Linking area number : OFF, 1 to 8

Main Output

Number of Main Output

Up to 2 points (OUT1, OUT2)

Output Items

Control output, HBA output, FAIL output

Output Type

Relay output:
Voltage pulse output :
Current output:
Continuous voltage oup
SSR (Triac) output :
Open collector output :
(Sink type)

Form A contact, 250V AC 3A (resistive load) 0/12V DC
(Load resistance : More than 600 2)
4 to 20 mA DC, 0 to 20mA DC
(Load resistance : Less than 600Ω)
0 to 1 V DC, 0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC
(Load resistance : More than $1 \mathrm{k} \Omega$)
Rated current : 0.5A
Load voltage : Less than 30V DC,
Maximum load current: Less than 100 mA
ON voltage : Less than 2V DC (at 100 mA)

mamememem 100040090900

Specifications

Digital Input

-FB100 (DI 1 to 5 : Optional) -FB400/900 (DI 1 to 4 : Optional, DI 5 to 7 : Standard)

Number of Input
FB100: Up to 5 points (DI 1 to 5)
FB400/900: Up to 7 points (DI 1 to 4, DI 5 to 7)

Input Rating

Non-voltage contact input

Functions

Memory area selection (Area set/No area set is selectable)
RUN/STOP, Remote/Local, Auto/Manual, Alarm interlock reset

- Selectable (See digital input allocation table)

DC voltage (Low), Current : 0 to 1 V DC, 0 to 100 mV DC, 0 to 10 mV DC 4 to 20 mA DC, 0 to 20 mA DC
DC voltage (High) : $\quad 0$ to 5 V DC, 1 to 5 V DC, 0 to 10 V DC

- PV input and remote setpoint input are not isolated for each other.
- Universal input

Sampling time

0.1 sec (with measuring input sampling time of 0.05 sec)
0.2 sec (with measuring input sampling time of 0.1 sec)
0.5 sec (with measuring input sampling time of 0.25 sec)

Accuracy
0.1% of span

Digital Output \quad| :FB100: |
| :--- |
| FB400900: |
| Sapandard |

Number of Sub Output
FB100: Up to 2 points (DO1,DO2)
FB400/900: Up to 4 points (DO1 to DO4)

FB400/900: Up to 4 points (DO1 to DO4)
Output Items
Event output, Heater break alarm (HBA), FAIL
Output Type
Relay output: Form A contact, 250V AC 1A (resistive load)

Number of Event Setting

Up to 4 points (Event 1 to 4)
Alarms
Type: Deviation High, Low, High/Low, Band,
Process High, Low
Set value High, Low
MV value High, Low
Cool side MV value (MV) High, Low
FBR value High, Low
Control Loop Break Alarm (LBA)
Setting range
Deviation:

- (Input span) to + (input span)

Differential gap : 0 to input span
Process, Set value : Same as input range
Differential gap : 0 to input span
MV value, FBR valued : -5.0 to $+105.0 \%$
Control loop break alarm (LBA)
LBA time : 0 to 7200 sec . (OFF by setting zero) LBA deadband : 0 to input span

Output

Assignable to digital output

Other Functions

a) Hold/Re-hold action (Valid for deviation/band/process alarm only)

- Hold action is activated at Power-up and STOP to RUN.

Re-hold action is activated at Power-up, STOP to RUN, and the control set value change.
b) Event action is configurable in case of input abnormality.
c) Energized/de-energized action is configurable.
d) Delay timer : 0.0 to 600.0 sec
e) Interlock (latch) function is configurable.

Heater Break Alarm

Number of CT Input
Up to 2 points

CT Input type

CTL-6-P-N (30A), CTL-12-S56-10L-N(100A)

- Selectable

Accuracy
$\pm 5 \%$ of input value or $\pm 2 \mathrm{~A}$ (whichever is larger)
Display range 0.0 to 100.0 A

Output Assignable to output 2 or digital output (DO2 to 4).
Power feed forward input
(FB400/900 only, Optional)

Analog Retransmission Output (Optional)

Number of Outputs 1 point

Output types
Measured value (PV), Deviation (DEV), Set value (SV), Manipulated output value (MV)

Output Signal
Current output : $\quad 4$ to $20 \mathrm{~mA} \mathrm{DC}, 0$ to 20 mA DC
(Load resistance : Less than 600Ω)
Continuous voltage output: 0 to 1 V DC, 0 to 5 V DC, 1 to 5 V DC, 0 to 10 V DC (Load resistance : More than $1 \mathrm{k} \Omega$)

Feedback Resistance (FBR) Input (Optional)

Resistance value

Standard : 100 to $10 \mathrm{k} \Omega$ (factory default 135Ω)
Sampling time
0.1 sec (with measuring input sampling time of 0.05 sec)
0.2 sec (with measuring input sampling time of 0.1 sec)
0.5 sec (with measuring input sampling time of 0.25 sec)

- Not available with PFF or CT 2 input.

Communications
(Optional)
Number of communications :
Communication method : COM1: RS-485, RS-232C, RS-422A -RS-232C: FB400/900 only COM2: For Inter-controller communication
Communication speed :
Protocol:
2400, 9600, 19200, 38400 BPS
ANSI X3.28(1976) 2.5 A4 MODBUS
Bit format
Start bit :
-1
Parity bit: $\quad 7$ or $8 \bullet$ For MODBUS 8 bit only
Parity bit :
Stop bit
Stop bit :
Maximum connection :

Communication to Controller : Automatic temperature rise, Cascade control, Temperature ratio setting, Group STOP/RUN

Waterproof/Dustproof
(Standard)
NEMA4X, IP66

- Waterproof/Dustproof protection only effective from the front in panel mounted installation.

General Specifications

Supply Voltage

a) 90 to 264 V AC (Including supply voltage variation) [Rating: 100 to 240 V AC] ($50 / 60 \mathrm{~Hz}$ selectable)
b) 21.6 to 26.4 V AC (Including supply voltage variation)
[Rating : 24 V AC] ($50 / 60 \mathrm{~Hz}$ selectable)
c) 21.6 to 26.4 V DC (Ripple rate 10% p-p or less) [Rating:24VDC]

Power Consumption

FB100: Less than 8.1VA for AC type (at 240V AC)
Less than 5.3VA for 24V AC type
Less than 142 mA for 24 V DC type
Less than 11.9VA for AC type (at 240 V AC)
$\begin{array}{ll} & \text { Less than 8.2VA for 24V AC type } \\ \text { FB900 : } \quad \text { Less than 250mA for 24V DC type } \\ \text { Less than 13.0VA for AC type (at 240V AC) }\end{array}$
$\begin{array}{ll} & \text { Less than 8.2VA for 24V AC type } \\ \text { FB900 : } \quad \text { Less than 250mA for 24V DC type } \\ & \text { Less than 13.0VA for AC type (at } 240 \mathrm{~V} \text { AC) }\end{array}$
Less than 9.3VA for 24V AC type
Less than 300 mA for 24 V DC type

Power Failure Effect

A power failure of 20 m sec or less will not affect the control action.
If power failure of more than 20 m sec occurs, controller will restart with
the state of HOT start 1, HOT start 2 or COLD start (selectable)

Self-Diagnostic Function

Adjustment data check, Back-up check, A/D converter check, etc.
Operating Environments: -10 to $50^{\circ} \mathrm{C}$ [14 to $122^{\circ} \mathrm{F}$] 5 to 95% RH.
Absolute humidity : MAX. W.C $29.3 \mathrm{~g} / \mathrm{m}^{3}$ dry air at 101.3 kPa .
Memory Backup : Backed up by non-volatile memory (FRAM)

- Data retaining period : Approx. 10 years
- Number of writing : Approx. 1,000,000,000,000,000 times. (Depending on storage and operating conditions.)

Net Weight

FB100: Approx. 150g, FB400: Approx. 230g, FB900: Approx. 290g
External Dimensions (W x H x D)
FB100 : $48 \times 48 \times 740 \mathrm{~mm}$, FB400 : $48 \times 96 \times 60 \mathrm{~mm}$, FB900 : $96 \times 96 \times 60 \mathrm{~mm}$

Temperature/Process Controller FB100/400/900

Model and Suffix Code

- Universal input, no model code required on hardware code.
- Default setting
- Digital output (DO1, DO2) : Standard function
*1 : When Heat Control or Cool Control is selected, output 2 is available for Event Output, HBA Output and FAIL Output.
See Output Allocation Table (page 7).
*2 :See Digital Input (DI) Allocation Table (page 7)
*3 :When HBA (heater break alarm) is used, select the "CT input" from the model code.
Input range code table
Thermocouple

Output signal code table

3	$0-1 \mathrm{VDC}$	$*$	4	$0-5 \mathrm{~V}$ DC	5	$0-10 \mathrm{~V}$ DC	6	$1-5 \mathrm{~V}$ DC	7	$0-20 \mathrm{~mA} \mathrm{DC}$	8

* 0 to 1 VDC output can be specified only for analog retransmission output.

Temperature/Process Controller $\mathrm{ED} 100 / 400 / 900$

Quick Start Code 2

FB100

- Quick start code 2 tells the factory to ship with each parameter preset to the values detailed as specified by the customer. Quick start code is not necessarily specified when ordering, unless the preset is requested.
These parameters are software selectable items and can be re-programmed in the field via the manual.

- Default setting when no quick start code is specified.

CT type: CTL-6-P-N
Communication 2 :ANSI/RKC standard protocol

- Communication 2 is for inter-controller communication.

Output Allocation Table (Programmable) Default setting
Output Allocation Table (Programmable)

Code	Output 1 (OUT 1)	Output 2 (OUT 2)	Digital Output 1 (DO 1)	Digital Output 2 (DO 2)
$\mathbf{0 1}$	Control output 1	Control output 2	Event 1	Event 2
$\mathbf{0 2}$	Control output 1	Control output 2	Event 1	Event 4
$\mathbf{0 3}$	Control output 1	Control output 2	Event 1	HBA
$\mathbf{0 4}$	Control output 1	Control output 2	Event 1	FAIL(De-energized)
$\mathbf{0 5}$	Control output 1	Control output 2	Event 4	HBA
$\mathbf{0 6}$	Control output 1	Control output 2	Event 4	FAIL(De-energized)
$\mathbf{0 7}$	Control output 1	Control output 2	HBA	FAIL(De-energized)
$\mathbf{0 8}$	Control output 1	HBA	Event 1	Event 2
$\mathbf{0 9}$	Control output 1	HBA	Event 1	Event 4
$\mathbf{1 0}$	Control output 1	HBA	Event 1	FAIL(De-energized)
$\mathbf{1 1}$	Control output 1	HBA	Event 4	FAIL(De-energized)
$\mathbf{1 2}$	Control output 1	FAIL(De-energized)	Event 1	Event 2
$\mathbf{1 3}$	Control output 1	FAIL(De-energized)	Event 1	Event 4
$\mathbf{1 4}$	Control output 1	Event 1	Event 2	Event 3
$\mathbf{1 5}$	Control output 1	Event 4	Event 1	Event 2

- Energized/De-energized is configurable except for the FAIL output.
(Factory default setting: Energized)

(Caution)

- Invalid for a non-existing output/input function.
-When used as heating/cooling control/position proportioning
control, select any code of 01 to 07 .
- Remote/Local transfer can be done during cascade control and ratio control by inter-controller communication.

Digital input (DI) Allocation Table (Programmable) © Default setting

Code	DI 1	DI 2	DI 3	DI4	DI 5	Selectable optional Code
01 *	Unused					
02	Memory area selection (1 to 8)			Area set	RUN/STOP	
03	Memory area selection (1 to 8)			Area set		
04	Memory area selection (1 to 8)			Area set	AUTO/MANUAL	
05	Memory area selection (1 to 8)			Area set	Alarm interlock	
06	Memory area selection (1 to 8)			RUN/STOP		A
07	Memory area selection (1 to 8)			RUN/STOP	AUTO/MANUAL	
08	Memory area selection (1 to 8)			RUN/STOP	Alarm interlock	
09	Memory area selection (1 to 8)				AUTO/MANUAL	
10	Memory area selection (1 to 8)				Alarm interlock	
11	Memory area selection (1 to 8)			AUTO/MANUAL	Alamm interock	
12	Memory area selection (1 to 8)					A, E
13	RUN/STOP	REMOTELOCAL	AUTO/MANUAL			
14	RUN/STOP	REMOTELOCAL	Alarm interlock			
15	RUN/STOP	AUTO/MANUAL	${ }_{\text {Alamet inter }}$			
16	REMOTE/LOCAL	AUTO/MANUAL	Alarm interock			
17	RUN/STOP	REMOTELOCAL				A, B, C, D, E
18	RUN/STOP	AUTO/MANUAL				
19	RUN/STOP	Alarm interlock				
20	REMOTELOCAL	AUTOIMANUAL				
21		Alarm interock				
22	AUTO/MANUAL	${ }^{\text {Alarasm interlock }}$				
23	RUN/STOP					
24	REMOTELOCAL					
25	AUTOIMANUAL					3, 4, 5, 6, 7, 8
26	Alarm interock					

Temperature/Process Controller FB100/400/900

Model and Suffix Code)

- FB400/900

- Universal input, no model code required on hardware code.
* When HBA (heater break alarm) is used, select the "CT input" from the model code
** When inter-controller communication is used, please specify code "W, X or Y (COM2 : RS-485).

Input range code table

Thermocouple

Input	Code	Range	Input	Code	Range
K	K 135	-200.0 to $+400.0^{\circ} \mathrm{C}$	J	J:C7	-200.0 to $+700.0^{\circ} \mathrm{F}$
	K 140	-200.0 to $+800.0^{\circ} \mathrm{C}$		J C6	-328.0 to $+1200.0^{\circ} \mathrm{F}$
	K 109	0.0 to $400.0^{\circ} \mathrm{C}$		J 'B6	0.0 to $800.0^{\circ} \mathrm{F}$
	K:10	0.0 to $800.0^{\circ} \mathrm{C}$		J:B9	-328 to $+2192^{\circ} \mathrm{F}$
	K 141	-200 to $+1372^{\circ} \mathrm{C}$		J:A1	0 to $800^{\circ} \mathrm{F}$
	K:02	0 to $400^{\circ} \mathrm{C}$		J:A2	0 to $1600^{\circ} \mathrm{F}$
	K:04	0 to $800^{\circ} \mathrm{C}$	T	T:19	-200.0 to $+400.0^{\circ} \mathrm{C}$
	K : C6	-250.0 to $+800.0^{\circ} \mathrm{F}$		T : C2	-328.0 to $+752.0^{\circ} \mathrm{F}$
	K : C4	-328.0 to $+400.0^{\circ} \mathrm{F}$	S	S:06	-50 to $+1768^{\circ} \mathrm{C}$
	K : A4	0.0 to $800.0^{\circ} \mathrm{F}$		S :A7	-58 to $+3214^{\circ} \mathrm{F}$
	K C 5	-328 to $+2502^{\circ} \mathrm{F}$	R	R:07	-50 to $+1768^{\circ} \mathrm{C}$
	K : A1	0 to $800{ }^{\circ} \mathrm{F}$		R:A7	-58 to $+3214^{\circ} \mathrm{F}$
	K : A2	0 to $1600^{\circ} \mathrm{F}$	E	E:21	-200.0 to $+700.0^{\circ} \mathrm{C}$
J	J :27	-200.0 to $+400.0^{\circ} \mathrm{C}$		E:06	-200 to $+1000^{\circ} \mathrm{C}$
	J : 32	-200.0 to $+800.0^{\circ} \mathrm{C}$		E:A9	-328.0 to $+1292.0^{\circ} \mathrm{F}$
	J:08	0.0 to $400.0^{\circ} \mathrm{C}$		E:B1	-328 to $+1832^{\circ} \mathrm{F}$
	J:09	0.0 to $800.0^{\circ} \mathrm{C}$	B	B:03	0 to $1800^{\circ} \mathrm{C}$
	J:15	-200 to $+1200^{\circ} \mathrm{C}$		B : B 2	0 to $32722^{\circ} \mathrm{F}$
	J:02	0 to $400^{\circ} \mathrm{C}$	N	N:02	0 to $1300^{\circ} \mathrm{C}$
	J:04	0 to $800^{\circ} \mathrm{C}$		N:A7	0 to $2372{ }^{\circ} \mathrm{F}$

Input	Code	Range	
PLII	A:02	0 to	$1390^{\circ} \mathrm{C}$
(NBS)	A:A2	0 to	$2534{ }^{\circ} \mathrm{F}$
W5ReN26Be	W 103	0 to	$2300^{\circ} \mathrm{C}$
(ASTM)	W:A2	0 to	$4200^{\circ} \mathrm{F}$
U	U:04	0.0 to	$600.0^{\circ} \mathrm{C}$
(DIN)	U:B2	0.0 to	$1112.0^{\circ} \mathrm{F}$
	L:04	0.0 to	$900.0^{\circ} \mathrm{C}$
(DIN)	L :A3	0.0 to	$1652.0^{\circ} \mathrm{F}$

RTD

Input	Code	Range
Pt100	D 34	-100.00 to $+100.00^{\circ} \mathrm{C}$
	D : 35	-200.0 to $+850.0^{\circ} \mathrm{C}$
	D 21	-200.0 to $+200.0^{\circ} \mathrm{C}$
	D C8	-199.99 to +199.99 ${ }^{\circ} \mathrm{F}$
	D C9	-328.0 to $+1562.0^{\circ} \mathrm{F}$
JPt100	P 29	-100.00 to $+100.00^{\circ} \mathrm{C}$
	P:30	-200.0 to $+640.0^{\circ} \mathrm{C}$
	P C8	-199.99 to $+199.99^{\circ} \mathrm{F}$
	P C9	-328.0 to $+1184.0^{\circ} \mathrm{F}$
	P:D1	-200.0 to $+200.0^{\circ} \mathrm{F}$

DC Current • voltage

Input	Code	Range	Input	Code	Range
0 to 10 mV	1:01	0.0 to 100.0\%	0 to 20 mA	7101	0.0 to 100.0\%
0 to 100 mV	2:01		4 to 20 mA	8:01	
0 to 1V	3:01		-100 to +100 mV	9:01	
0 to 5V	4:01		-1 to +1V	9:02	
0 to 10 V	5;01		-10 to 10 mV	9:03	

Output signal code table

Temperature/Process Controller FB100/400/900

Quick Start Code 2
 FB400/900

- Quick start code 2 tells the factory to ship with each parameter preset to the values detailed as specified by the customer. Quick start code is not necessarily specified when ordering, unless the preset is requested.
These parameters are software selectable items and can be re-programmed in the field via the manual.

* Please specify "8" when the remote setpoint input signal is not used.

Output Logic Code Table.

Output 1 (OUT 1)	Output 2 (OUT 2)	$\begin{array}{\|c\|} \hline \text { Digital Output } 1 \\ \text { (DO 1) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Digital Output 2 } \\ \text { (DO 2) } \\ \hline \end{array}$	$\begin{gathered} \text { Digital Output } 3 \\ \text { (DO 3) } \end{gathered}$	Digital Output 4 (DO 4)	Code
Control output 1	Control output 2	Event 1	Event 2	Event 3	Event 4	1
Control output 1	Control output 2	Event 1	Event 2	Event 3	HBA	2
Control output 1	Control output 2	Event 1	Event 2	HBA	$\begin{gathered} \text { FAIL } \\ \text { (De-energized) } \end{gathered}$	3
Control output 1	Control output 2	Event 1	HBA	Event 3	Event 4	4
Control output 1	HBA	Event 1	Event 2	Event 3	Event 4	5
Control output 1	HBA	Event 1	Event 2	Event 3	$\begin{gathered} \text { FAIL } \\ \text { (De-energized) } \end{gathered}$	6
Control output 1	$\begin{gathered} \text { FAIL } \\ \text { (De-energized) } \end{gathered}$	Event 1	Event 2	Event 3	Event 4	7

- Energized/De-energized is configurable except for the FAlL output.
(Factory default setting: Energized)
- Invalid for a non-existing output/event function.
(Caution)
- When used as heating/cooling control/position proportioning
control, select any code of 1 to 4 .

Event Type Code Table.

Event type	Code
Deviation High	A
Deviation Low	B
Deviation High/Low	C
Band	E
Deviation High with Alarm Hold	E
Deviaition Low with Alarm Hold	F
Deviation High/Low with Alarm Hold	G
Process High	H
Process Low	J
Process High with Alarm Hold	K
Process Low with Alarm Hold	L
Deviaition High with Alarm Re-Hold	Q
Deviation Low with Alarm Re-Hold	R
Deviation High/Low with Alarm Re-Hold	T
Set value High	V
Set value Low	W
MV value High	$\mathbf{1}$
MV value Low	$\mathbf{2}$
Cool side MV value High	$\mathbf{3}$
Cool side MV value Low	$\mathbf{4}$

Accessory

(For Power feed forward input)

* Supplied when power feed forward function is specified.
 Mounting dimension Mounting dimension

* When ordering transformer for replacement, please specify one of the following model codes. 100 to 120V AC type: PFT-01 200 to 240V AC type : PFT-02

Current transformer for heater break alarm (HBA) (Sold separately)

Model code
L-o-P-N $(0$ to 30 A$)$
CTL-12-S56-10L-N (0 to $100 \bar{A}$)

External Dimensions

Unit : mm

FB100

(Close horizontal mounting) * Up to 6 units

$\mathrm{L}=(48 \mathrm{Xn}-3)^{+0.6}$
n : Number of controllers ($2=<n=<6$)

FB400

FB900

(Close horizontal mounting)

* Up to 6 units

Panel Cutout
(Close horizontal mounting)

* Up to 6 units

TemperaturePProcess Controller FB100/400/900

Rear Terminals

FB100

Optional function terminals

FB400

FB900

- Use a solderless terminal for screw size M3X6.

No		Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\left\|\begin{array}{cc} \frac{A C}{T} L & D C \\ 100-240 \mathrm{~V} & 24 \mathrm{~V} \\ \frac{24 \mathrm{~V}}{} \mathrm{~N} & -1 \end{array}\right\|$	Power supply
3 4 5	$\stackrel{\text { COM }}{\substack{-\overline{\mathrm{NO}} \\-\mathrm{NO}^{\mathrm{O}}}} \mathrm{NO}_{\mathrm{NO}}^{\mathrm{DO}}$	Digital output 3, 4 $(\mathrm{DO} 3,4)$ Relay contact output
6 7 8		Digital output 1, 2 $(\text { DO 1, 2) }$ Relay contact output
9 10		Main output (OUT2) (1) Relay contact output (2) Voltage pulse / Current/Voltage (3) SSR (Triac) / Open collector
11	$\begin{array}{ll} \square \mathrm{NO}_{0} & \square \\ \frac{\mathrm{NO}}{1} & \square \\ (1) & \frac{\square}{(2)}-\frac{1}{(3)} \\ \hline \end{array}$	Main output (OUT1) (1) Relay contact output (2) Voltage pulse / Current/Voltage (3) SSR (Triac) / Open collector

(*) Optional

CT : Current transformer for heater break alarm

