704-399-4248 sales@sethermal.com

A HOLISTIC APPROACH & STRATEGIC VISION FOR PROCESS SOLUTIONS

Providing Thermal Solutions

Thermocouple Wire, Cable and Thermocouple Connector Products

At Southeast Thermal Systems, we specialize in distributing high-quality thermocouple wire and cable solutions to meet the needs of various industries. Our commitment to quality, integrity, and expertise ensures that we provide exceptional service and reliable products for all your temperature sensing applications.

Expertise You Can Trust

With years of combined experience in the thermocouple wire industry, our team ensures that every product we distribute meets the highest standards of quality and performance. Our dedication to excellence guarantees that you receive the best products, supported by technical expertise and personalized service.

Mineral Insulated (MGO) Sensors

Industrial Thermocouples

 

Plastics & Packaging

 

Temperature Transmitters

 

Resistance Temperature Detectors

 

 

Thermowells

 

 

 

Custom Designed sensor

 

Food, Dairy, & Pharma

Sensors with Digital Transmitters

Calculators

Power Flow Rate Temp Calculator

Calculate the electrical power, flow rate or temperature requirement.
airflow in standard cubic feet per minute
temperature rise in degrees F from the inlet to the exhaust
Watts = SCFM x ΔT/2.5

Temperature Conversion Calculator

Calculate the electrical power, flow rate or temperature requirement.
°F = ((( °C * 9) / 5 ) + 32)
°C = ((( °F - 32) * 5 ) / 9)

Three-Phase Unit Calculator

Fill in two values to find the 3rd.
W = LC * (V * √2)
V = (W / LC) / √2
LC = W / (V * √2)

Single Phase Unit Calculator

Fill in two values to find the 3rd.
W = LC * V
V = LC * W
LC = W / V

Ohms Law Calculator

Fill in two values to find the other two.

O = V / A

O = V² / W

O = W / A²

V = A * O = A * (V/A)

V = √(W * O)

V = W / A

A = V / O

A = W/ V

A = √(W / O)

W = A * V

W = V² / O

W = A² * O

Heat Transfer Through Convection Calculator

ρ = density (lb/ft3)

V = volume flow rate (ft3/hour)

Cp = specific heat (Btu/lb°F)

Ta-Tb = temperature differential (°F)

Q = ρ x V x Cp x (Ta-Tb)


Fill in four values

ρ = density (lb/ft3)
V = volume flow rate (ft3/hour)
Cp = specific heat (Btu/lb°F)
Ta-Tb = TD (°F)
Q = ρ x V x Cp x (Ta-Tb)

ACFM to SCFM

ACFM = airflow in actual cubic feet per minute

P = gage pressure (psi)

T = gas temperature °R = 460 + °F

SCFM = airflow in standard cubic feet per minute


Find Standard Cubic Feet per Minute based on data from your Actual Cubic Feet per Minute Rotameter

airflow in actual cubic feet per minute
gage pressure (psi)
gas temperature °R = 460 + °F
airflow in standard cubic feet per minute

Standard Flow Rate (SCFM) Calculator

Calculate the SCFM.
Actual cubic feet per minute
Actual pounds per square inch at Gauge
Actual temperature in °F. °R = 460 + °F
CFM * (PSI actual / 14.7psi)*(528°R / T actual)

Pressure Conversion

Fill in one value to calculate the other.
PSI = Bar * 14.504
Bar = PSI / 14.504

Mass Flow to volume Metric Flow

Fill in one value to calculate the other two
kg/h = Kilogram Per Hour (lb/min multiply by 27.216)
Lbs/min = Pounds per minute (kg/h divide by 27.216)
SCFM = Standard cubic feet per minute

Power Flow Rate Temp Calculator

Calculate the electrical power, flow rate or temperature requirement.
airflow in standard cubic feet per minute
temperature rise in degrees F from the inlet to the exhaust
Watts = SCFM x ΔT/2.5

Temperature Conversion Calculator

Calculate the electrical power, flow rate or temperature requirement.
°C = ((( °F - 32) * 5 ) / 9)
°F = ((( °C * 9) / 5 ) + 32)

Three-Phase Unit Calculator

Fill in two values to find the 3rd.
W = LC * (V * √2)
V = (W / LC) / √2
LC = W / (V * √2)

Single Phase Unit Calculator

Fill in two values to find the 3rd.
W = LC * V
V = LC * W
LC = W / V

Ohms Law Calculator

Fill in two values to find the other two.

O = V / A

O = V² / W

O = W / A²

V = A * O = A * (V/A)

V = √(W * O)

V = W / A

A = V / O

A = W/ V

A = √(W / O)

W = A * V

W = V² / O

W = A² * O

Heat Transfer Through Convection Calculator

ρ = density (lb/ft3)

V = volume flow rate (ft3/hour)

Cp = specific heat (Btu/lb°F)

Ta-Tb = temperature differential (°F)

Q = ρ x V x Cp x (Ta-Tb)


Fill in four values

ρ = density (lb/ft3)
V = volume flow rate (ft3/hour)
Cp = specific heat (Btu/lb°F)
Ta-Tb = TD (°F)
Q = ρ x V x Cp x (Ta-Tb)

ACFM to SCFM

ACFM = airflow in actual cubic feet per minute

P = gage pressure (psi)

T = gas temperature °R = 460 + °F

SCFM = airflow in standard cubic feet per minute


Find Standard Cubic Feet per Minute based on data from your Actual Cubic Feet per Minute Rotameter

airflow in actual cubic feet per minute
gage pressure (psi)
gas temperature °R = 460 + °F
airflow in standard cubic feet per minute

Standard Flow Rate (SCFM) Calculator

Calculate the SCFM.
Actual cubic feet per minute
Actual pounds per square inch at Gauge
Actual temperature in °F. °R = 460 + °F
CFM * (PSI actual / 14.7psi)*(528°R / T actual)

Pressure Conversion

Fill in one value to calculate the other.
PSI = Bar * 14.504
Bar = PSI / 14.504

Mass Flow to volume Metric Flow

Fill in one value to calculate the other two
Kg/h = Kilogram Per Hour (lb/min multiply by 27.216)
Lbs/min = Pounds per minute (kg/h divide by 27.216)
SCFM = Standard cubic feet per minute